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1. Introdurtion

One of the most remarkable features of partially-

YY)

crystalline polymers is their ability to undergo large plastic

deformations ("drawing") without rupture. This phenomenon is

.
)
!

readily distinguished from plastic yielding in ductile metals,
which is considerably smaller in extent, or in glassy polymers,
whors yoo1diny is localized within narrow shear bands. 1In
contrast, nlastic ylelding in partially-crystalline polymers
taxkes nlace in a relatively homogensenus way and results in
doformations of sev-ral hundred percent without rupture(l). The
material then strain hardens after drawing so that further
daformation is only achieved by imposing higher stresses.
Renresentative ra2lations between tensile stress and
displacement of the clamps securing a tensile specimen are

Y
the sp2cimen spontaneously thins over part of its length to

shown in Figures 1 and 2. After the yield stress o, is reached

form a "neck" wher2 the extension is large. The rest of the
speciman is still lightly stretched. Further displacement of

o the clamps is achieved by an incresase in the amount of

a , . . ,
material in the neck at the expense of the lightly-strained
matarial on either side of it. This transformation continues

e at a constant stress, generally smaller than Oy' until the

ﬁ whole spacimen has become uniformly stretched to the "natural

3

i . . . .

{ draw ratin", i.e., the stretch ratio set up in the neck,
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The natural draw ratio, as discussed in more detail later, is
quite different for different polymers. For example, Tow-density
polyethylene (LDPE) can only be drawn to about 5 times its origina)
length whereas high-density polyethylene (HDPE) can be drawn
10X - 12X. Moreover, the draw ratio depends to a considerable
degree upon the conditions under which crystallization took place,
being much smaller for polymers crystallized in an oriented state.

Although considerable attention has been given to the molecuar
structure of semi-crystalline polymers and the rearrangements that
accompany plastic yielding and drawing (2,3), relatively little work
has been published on quantitative aspects of the drawing process.
Some preliminary observations are therefore reported here of the
extent of plastic deformation that various crystalline polymers
will undergo, and of the effect of the mode of crystallization
upon their subsequent deformability. An attempt is then made to
account for the marked differences observed in deformability
between different polymers, and between different crystallization
conditions for the same polymer, in terms of a simple model of

the drawing process.
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2. Exporimental Details

(1) Materials

Samples were prepared in the form of molded sheets about

eaar . OL s Wy

2 mm thick from several materials: trans-polyisoprene
(TPI), supplied by Polysar Limited, denoted TP-301; high-
density polyethylene (HDPE-1), supplied by Asahi-Kas~i :
Industries, denoted Microsuntec R340P; a second sample of %
molding-grade high-density polyethylene (HDPE-2) supnlied by
Jnion Carbide Corporation, denoted 8908; a sample of pipe- ]
grade medium-density polyethylene (MDPE) supplied by Union Q
Carbide Corporation, denoted E608; and a sample of film-grade
low-density polyethylene (LDPE), also supplied by Ynion ]
Carbide Corporation and denoted DFDY 0774. Trans-polyisoprene ?
(TPI) was also examined in the lightly-crosslinked state, ]
brought about by adding 1 per-ent by weight of dicumyl
peroxide and 1 percent of an antioxidant (Antioxidant 2246, !
’ Amer ican Cyanamid Company) to the material before hot-pressinag
‘ for 1 h at 150°C. The crosslinked material is denoted ‘
¢ TPI-X. Y
Samples of HDPE-1 and TPI-X were crystallized in the 1
_ oriented state by melting the molded sheets at 160°C and ;
»‘ 95°¢, respectively, for 15 minutes and then rapidly ﬁ
E stretching them to a predetermin2d length. They were then
; cooled rapidly in the stre*ched state so that crystallizatinn |
‘ %_
!
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took place completely before release. The exact state of
oriantation was determined from the dimensions of an inked
grid applied to the molded sheet initially.

Measured values of the density d of the crystallized
sheets and values of the degree of crystallinity (o
calculated from them are given in Table 1. No significant
changes in 4 and hence T wer= observed with the extent of
orientation imposed durina crystallization.

(ii) Determination of draw ratio

whan a spacimen deforms by cold drawing, the extension
becomes highly non-uniform until the whole sample has beaen
transformed into the drawn state. Further deformation then
occurs homdgeneously under increasing stress up to the point
of rupture. The natural draw ratio is that set up in the
necked region before the onset of strain hardening and
subsequent uniform deformation. It was measured by the
separation of grid lines placed on the sample initially. The
m2asurements were made while the samples were under tension
and in the process of being drawn.

Typical tensile stress-strain relations are shown in
Figures 1 and 2 for oriented test pieces of HDPE-1 and TPI-X,
stretched at a nominal strain rate of 0.05s ™! at 25°c.

When the stretching direction was at right angles to the

direction of prior orientation, repnrasented by an extension
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ratic -, then the corresponding value of extension ratio in
the direction of extension, given by_;lf, was less then
unity. Values of the extension ratio in the direction of
subsequent stretching have been employed in Figures 1 and 2 to
characterize the degree of prior orientation imposed during
crystallization.
3. Experimental Results

(i) Jtress-strain relations

Necking and drawing took place when the prior orientation
ratio - was less than about 8 tor HDPE-1 and less than about
2 for TPI-X, Figures 1 and 2. For greater amounts of prior
¢rientation a distinctly different type of deformation
occurred. No signs of necking were observed and, instead
of a pronounced drop in tensile load at the yield point, only
a change in slope of the load-displacement relation was noted,
Figures 1 and 2.

Measured values of the yield stress ay are plotted in

Figure 3 against the pre-orientation ratio %. For HDPE-]
they did not charge significantly over the entire range of
orientation, being about 24 MPa, and for TPI-X only a slight
increase was found, from about 9 to 14 MPa, as the degree of

prior orientation increased. The difference in QY between the two
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polymers may be due largely to the different levels of
crystallinity; 65 percent and 36 percent, respectively.
Changes in crystallite orientation or microstructure brought
about by prior orientation appear to have little effect on the
vield stress,

(ii) Draw ratio: Unoriented samples

Is

Values< of the natural draw ratio :d for unoriented samples #
5

of all of the materials examined are given in Table 1. They
ranaes from 2.6 for TPI-X tt12 for HDPE-2. Surprisingly, they 1
ar~ consistently larger for the more highly-crystalline ’
materials, whereas one might well have expected the reverse:
a greater ductility for less-crystalline materials. Moreover, ]
the largest values are somewhat larger than one would expect #
for the maximum extensibility of polymer chains in a loocse

molecular network: rubbery materials will undergo extensions

of cnly up to about 10X at the most, before rupture. As the

. Ve

present materials appear to recover completely on melting,
there is no indication of molecular flow during drawing. The

mol~cules thus appear to be retained within a network of

PSPPI 7

entanglements as if they were lightly crosslinked. The hiah
extansibility of HDPE-2 during drawing is therefore quite
R
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surprising, particularly in view of its hiah degree of
crystallinity. A possible model of the drawing process tha-
accounts for these features is advanced in a later section.

(iii) Draw ratio: effect of prior orientation

Values of the draw ratio Ad for oriented samples of
TPI-X and HDPE-1 are v’ oatted in_;igure‘4 against the prior
orientation ratio -, using logarithmic scales for both axes.
As the d»ar=o of prior orientation was increased, so the draw
ra~in dorreas2d, becoming unity; i.e., no drawing toox place;
whion the arior orisntation ratio was about 2.4 for TPI-X and
abouat 10 for HDPE-1. On the other hand, when extansion was

impos~d in a dir=ction perpandicular to the prior orientation,

i.e.,, * < 1, then the draw ratio increased, reaching values

of about 4 for TPI-X and about 14 for HDPE-1.

The variation of }d with prior orientatiecn ratio
was found to be aoprox;;ately an inverses proportionality:
q = cons*ant/*. The brokesn lines in Figure 4 are= drawn
with a slone of -1, consistent with this relationship. They
are seen to describe the experimental results reasonakly well,
except in the low-orientation region when  is close to
unity. A dependence of this form would arise from the
limited extensibility of polymer molecules, because prior

orientation by a factor - would reduce the additional

A%t ensinn ratio g that molecular <chains could undergo




.
before reaching tha fully-stretched state, by the factor %, :

A trestment of the drawing process in terms of the maximum

nossibla extensibility of polymer molecules is given in the

followiag saction, ;
4. Theoretical Considerations
A simple molecular model of the process of cold drawing
in partially-crystalline polymers is now put forward. A i
repros~ntative molecular chain between attachment points te
Ehe pnoatwork, l.e., between molecular entanglements or
~rnssliaks, is shown in Figure 5. 1Tt consists of n freely- )
jointsd units, each of length a, so that its fully-stratchagd ?
longth L. is given by na and its mean end-to-end length
A ' . . . . »
L_ in the molten state, Figure 5a, is given by n‘a. On ;
crystallization the center part of the molecule is assumed to 4
enter a crystallite of length LC and fold back on itself to ]
ent=2r the same crystallite a number of times, denoted f, j
Figure 5b. 1In order for the ends of the molecule, where it is S
socinaed to other molecules in the network, to be located on N
.
eith~r side of the crystallite, only odd values of f are ;
.‘
considerad here., In this simple model the degree of ]
{ crystallization C is given by ﬁ
a
} 4
L)
c = fL /L d
¢’ m ~
{ (1) .
! ]
£ ]
g J
b
*,
()
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ﬁ‘ Tt i neow assuma2d that drawing taXxes place when tha i
molecular chains entering a crystallite apply a1 sufficiently
high stress to it so that it becomes disrupted and transiorms
inta a new oxtanded form, Figur= 5c. A further assumption is »
made that the reguisite stress iz relatively high sc that the
molscules are almost fully extended at the onset of crystal
raarrantensnt, and subseguently. Thus, the natural draw ratio i
i 15 aiven by
4= by e ’
!
whor s L is the end-to-end distance for a repr=sontative
cihvl . ia the unoriented partially-crystalline state, Figura j
5h. This is no%t necessarily the same as the corresponding (
distance L in the molten state, Figure 5a. Indeecd, it 1is :
hyrnothosized that the process of crystallization will alter |
the distribution of chain end-to-=2nd distances, LO—» L, by i
ox~"11ing Jjunction points from the crystal lattice:-ufn .
{ particular, those chains which become fully-exterded first on .
L! stretching and thus initiate the disruption of crystallites ﬁ
will be those with junction points disposed in the direction :
of =+rratching and on either side of a crystallite, as shown j
K schematically in Figure 5b. i
An estimat~ of the initial junction separation distanc _
[ i, can he 3 icas foll-ws.  The distance 1 is composed of a 5
. ’
s f
L. .1
';
b [l
1 . o, P AAJA‘J-'J-‘Q_,.‘. ! S Lkl_..gj
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1
crystailine seguence length LC and an amorphcous distance ;
L‘, aiven approximately by the random-coil value La = f
TE-C)%nLa. ‘

Hence, ]

L=L + 1 = (CL/f) + (1-0)°L_/n", '3 ¥

c a m m _

on substituting for Lc in terms of L. from equation (1). .
Thus, the natural dr;; ratio LQ is ;;ven by é
l/‘d = (C/0) + (l-C)g/n%, “u) -

from equations 2 ani 3. )

This simple treatment suggests *that the natural draw ?
ratio will bes large for materials in which the molecules .
re-enter the crystallites many times and f is large, even
when the degree of crystallization is high. 1In other !
circumstances, the predicted draw ratio is small., Two extreme
cases are now consider=d. 1In each case the number n of ]
random links per molecular strand is given the representative >
valu., 200,

For TPI-X, the degree of crystallinity € is 36 percent _
and the natural draw ratio is about 2.6, Table 1. From !
equation 4, the average number of times f that a chain ;

s passes through a crystallite is obtained as 1.1, indicating 3

f‘ that for this material there is relatively little re-entry or %

E chain-folding., For HDPE-2, on the other hand, the degree of i

E crystallinity is 72 percent and the natural draw ratio is ]
t

about 12. From equation 4 the average number of times f




tnat 3 molecular chain passes through a single crystallite is
obtained as 15.6, indicating that there is a great deal of
re-entry or folded-chain crystallization in HDPE-2, as
prepared hersa,

From the number of random links involved in crystalline
segquences, 72 for TPI-X and 144 for HDPE-2, and the inferred
number of times that eansh chain enters the same crystallite,
wo may deduace the mean length Lc of a crystallite to be 65
random links for TPI-X and 9.2—;andom links for HDPE-2. The
lat*er number is consistent with the known crystal microstruc-
ture of polyethylene, corraspondinag to about 5-10 nm, but
the -ralue for TPI-X seaems unacceptably high. It should be
noted, howaver, that the present analysis does not distinguish
between a chain passing through a single crystalline sequence
in the diraection of stretching or a chain passing through two
or more crystalline sequences, without reversing direction,
before a junction point is reached. Thus, the large number of
random links deduced for the crystalline sequence length in
TPI-X may in reality be the sum of several crystallite lengths
traversed by the same molecular strand. Nevertheless, a clear
implication of the present analysis is that chain-folding is
much less prominent in TPI-X and that the crystallites are
consiaerably longer (thick r) than in HDPE. It would be

interesting and worthwhile to examin2 other pa-tially-

. W
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~rrystalline nolymars and to make direct comparison with their
~rystallite thicknesses, determined, for example, by SAXS.

The large effect of prior orientation upon the draw
ratio -, ,discussed previously and shown in Figure 4, can be
interpreted in terms of the molecular model advanced here., It
is in accord with a continuous change in the chain end -to-enrd
lenath L with prior orientation, as might well be expected,
with a corrasponding reduction in the number of times that a
molacular strand traverses a single crystallite,

5. Effect of Annealing or Quenching

A direct implication of the analysis given here is *hat
an increas> in crystallite thickness, brought about by
annealina, for example, should result in fewer re-entri=»s ani
a decrease in the natural draw ratio. Conversely, a decrease
in crystallite thickness and corresponding increase in number
of molecular re-entries should cause an increase in natural
draw ratio. Unoriented samples of HDPE-1 and TPI-X were
ther=fore pr2par=d by melting sheets and allowing them to
crystallize at different temperatures so that the crystallite
layer thicknesses would be somewhat different. Values of the
natural draw ratio are given in Table 2. As can be seen, the
higher the temperature 'I'c of crystallization (and, hence,

— is
the thicker the crystallite), the lower,the natiral draw ratio

}d’ in geneval. This trend is in accord with the mecrarism of cold drawi' "

vut forward here.
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6. Conclusions

Measur=ments have been made of the tensile properties of
several representative partially-crystalline polymers,

crystallized both in the oriented and unoriented state. The

N 4

yi=ld stress was found to be virtually unchanged by prior
orisntatinn but the natural draw ratio decreased in inverse E

~raparticn to the amoun*t of preoorientation.

. W

Srrixingt differences were found between the natural draw
rati~ for various polym>rs. A simple molecular model for the

drawirs Lrucens was developed in terms of a locse

. i
R, _ N
—

networX of molecules, held together by entanglements or
crossiinks whichare excluded from the crystal lattice. As a

r23ul%, the end-to-end distance for molecular strands in the

w2

o gt g

partially-crystalline material is different from that in the

‘

m2lt, Under tension, certain strands become fully-stretched

and initiate disruption of the crystallites, followed by their
rearrangement into the fully-drawn state. The principal term
in the analysis appears to be the number of times that a

molecule reverses direction and re-enters the same

crystallite. When this is large, the natural draw ratio is

large also,.
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This simple concept accounts successfully for the major
foatures of cold drawing: large differences between different
materials, a continuous decrease in the natural draw ratio
with the extent of prior extension in the melt, and a

decr=ase in the natural draw ratio on annealing.
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Table 1. Physical properties of the materials examined
Yield Draw
Material Density Crystallinity Stress Ratio
d C i! *g
(kg/m*) () (MPa)

TPI-X 36* 9.0 2.6
TPI 37* 9.0 2.7

LDFE 50* 10.5 5

MDPE 940 g2 ** 21.5 7
HDFE-1 64* 24 8.6

HDPE-2 955 72** 29 12

* Measured by DSC with a heating rate of 0.17 C/s.
Reported values for 100 crystallinity are: 44.5 cal/g
for TPI (4) and 69 cal/g for polyethylene (5).

** C was calculated from the measured density using a relation
given by Chiang and Flory (6).
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Table 2. Natural draw ratio :d for quenched and annealed samples.
, o . , L _ . ‘
Crystallization temperature, TC ‘d
(OC) N
TPI-X ’f
0 2 ]
40 .
45 2.1 ]
LDPE "
Quenched
(TC = 20-90 C) 4.8
100 5.3 o]
4
MDPE ]
Quenched -
(TC = 20-100 C) 6.4
»
118 7.7 )
HDPE-1 ’
Quenched )
T - o0l 2l
(T, = 20-100 C) 8.6 ?\‘
115 7.0 ik
121 3.5 i
HDPE-2
g >
Quenched :
E (T, = 20-100 C) 10.5
¢ 115 11.0
e 121 3.0
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Figure Legends

Figure 1. Relations between tensile stress - and apparent
extension e for oriented samples of HDPE-1.

Figure 2. Relations between tensile stress and apparent

extension e for oriented samples of TPI-X.

Figure 3. Dependence of yield stress gy upon the prior
orientation extension ratio } in the stretching
direction, for HDPE-l,., and TPI-X, O.
Fijur= 4. Devendance of natural draw ratio *q upon the
= 4
[' orior orientation extension ratio > in the "
4
b
T stretchiang direction, for HDPE-1,@, and TPI-X, 0.
' The brok2n lines are drawn with a slope of -1. g
S ]
»‘ Figure 5. (a) Sketch of a molecular strand between tie points Y
in the melt. ]
g (b) In the crystalline state. J
ﬁi (¢} In the drawn state. %
_ ]
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